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Logarithmic Velocity Profile for Turbulent Flow in 
Straight Rough Pipe and Evaluation of Karman 

Constant with Boundary Layer Reynolds 
Number- A Complete Solution  

Tapan Kumar Ghosh 
 

Abstract- This paper deals with the derivation of logarithm velocity distribution in the turbulent overlap region considering roughness element k as an 
important parameter. Milikan’s method primarily did not consider roughness element. Complete solution together with the value of Karman constant has 
been obtained. The mathematical structure is based on Ipsen’s method of dimensional analysis followed by Boltzmann entropy formalism.  
 
Index Terms— Karman-Prantdl velocity distribution for turbulent flow, Reynolds number, laminar sublayer.   

——————————      —————————— 

1 INTRODUCTION                                                                     

udwig Prandtl is the father of modern fluid mechanics. He 
not only surpassed the uses of Navier-Stokes equation by 

his boundary layer theory (1904) but presented his mixing 
layer theory in 1925 advancing the concept of turbulent shear 
stress due to Osborne Reynolds (1886). Theodor Von Karman, 
student of Prandtl rederived the same   law in 1930. Prandtl 
made two assumptions – shear stress in the turbulent bounda-
ry layer is constant and equals  boundary shear stress ( ωτ ) 
and the mixing length (l) i.e. the distance between two layers 
in the transverse direction such that particles from one can get 
into the other is directly proportional to distance (y) from 
boundary. Constant of proportionality kr is called Karman 
constant. Karman on the other hand assumed [1] linear stress 
distribution together with l being directly proportional 

to ( ) ( )2 2du dy d u dy . C.B. Millikan in 1938 adopted a di-

mensional method without going into physical detail of the 
process. He derived the logarithmic law on the consideration 
that the inner layer flow with flow parameters u, y, ωτ , ρ ,ν  

leading to the  dimensional relation ( )u u f u y ν=* * and 

outer layer flow with parameters U, y, ωτ , ρ ,δ  leading to 

dimensional relation   ( ) ( )* *U u u g y δ− = can overlap 

smoothly if the velocity profile is logarithmic. So his method 
employs 6 parameters and out of which 5 are to be choosen at 
a time for two different layers. Roughness element k and its 
effects were not considered. In the following section a deriva-
tion based on Ipsen’s (1960) method of   dimensional analysis 

_______________________________ 

 

will be presented taking the roughness element  k into ac-
count. This not only indicates the elegance of the method but 
also avoids any specific model of the process bringing out the 
essence of logarithmic velocity distribution for turbulent flow. 
The derivation shows that logarithmic velocity distribution is 
not an outcome of some choice or assumption but reflects the 
very nature of flow associated with boundary layer. Remarka-
ble feature of the analysis is that it can estimate Karman con-
stant theoretically.  

2 PRANDTL-KARMAN UNIVERSAL VELOCITY      
      DISTRIBUTION LAW FOR TURBULENT BOUNDARY   
      OVERLAP LAYER WITH BOUNDARY TEXTURE 

 

( )1 /

* r

u ln y y
u k

=                                  (1) 

                     *u ωτ ρ=                                          (2) 

Hereu* is called shear velocity and y/ is some characteristic 
distance from the boundary where velocity (u) becomes zero. 

ωτ  represents wall shear stress due to viscous effect and 
roughness and ρ  is the density of fluid. Several experiments 
estimated kr to a value close to 0.41.  

  
Nikuradse’s experiments (1932; 1933) on smooth and rough 
pipe produced the following estimates on y/ in terms of k 
(Nikuradse sand grain roughness) and thickness (δ ls) of lami-
nar sub layer. Nikuradse’s k is actually mean diameter of sand 
particle. Here lsδ  is given by  

                           11 6 *.ls uδ ν=                                                   (3) 
ν  is the kinematic viscosity and is the ratio of coefficient of 
viscosity(η) to density( ρ ).  

L 
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Herman Schlichting Criterion (1955)    Nikuradse’s estimate(y/) 
 of surface   

 
Smooth surface: 

1  i.e.  5
2lsk kuδ ν< <*              

1107
9 22lsy

u
νδ= =/

*.
 

 
Transitional roughness:  
0 5 < 6 i.e. 5 < 70lsk kuδ ν< <*.  

 
Fully rough surface:      

6 i.e. 70*lsk kuδ ν> >                                    30/y k=  
 

 
Substituting these values of y/ and kr=0.41   in equation (1) we 
get  

 

( )2 44 5 42* *u u . ln u y .ν= +   (smooth surface)              (4a)  

                                      
 ( )2 44 8 3*u u . ln y k .= +         (rough surface)              (4b) 

Equation (4a) is valid for 280/y y > i.e. for 2 6.lsy δ >  

or 30yu ν >* . If 5 30yu ν< <*  then the layer of flow is 
called buffer layer. In this layer turbulence and laminar mo-
tion coexists. Equation (4b) is valid for 30y y >/ i.e. 

for 1>y k . 
Equations 4(a) and 4(b) represent the Prandtl Karman one di-
mensional velocity distribution for smooth and rough bound-
aries in the turbulent region.  If we use kr = 0.4 we get conven-
ient figures such as 2.5 instead of 2.44 and 5.5 and 8.5 for 5.42 
and 8.3.  Texts generally refer to these values.  
. 

3 DIMENSIONAL DERIVATION 
Close to the boundary but outside laminar sublayer we can 
choose the following functional form of u. Here u depends on 
both inertia parameter (ρ ) and viscosity parameter (η). 
 
      ( )1                              u f k yωη ρ τ= , , , ,                   (5a) 
 
     [LT-1]    [ML-1T-1]   [ML-3]  [ML-1T-2] [L]     [L] 
 
Ipsen suggested step by step method by successive elimina-
tion of  M, L and T in successive steps through division or 
multiplication by suitable dependent variable with suitable 
power. Let’s start with elimination of M. 
                                                
       2                , , ,u f k yωτη

ρ ρ
 =  
 

 
 
        [LT-1]        [L2T-1]      [L2T-2]     [L]      [L] 
 

Here one thing which is very important to note that division 
by ρ  eliminates M from those terms where it was and other 
terms are left undisturbed. Now let’s rewrite the above equa-
tion  

                                     

( )2
2                      *, , ,u f u k yν=     

                         [LT-1]      [L2T-1]     [L2T-2]      [L]   [L]        
                                 

( )3                       *, , ,u f u k yν=  

  [LT-1]     [L2T-1]    [LT-2]    [L]   [L] 
 

                       *u⇓ ÷      *u⇓ ÷  
                                                         

               4                u f k y
u u

ν 
=  

 * *

, ,  

               [M0L0T0]         [L]       [L]    [L] 

                               
*u
ν

⇓ ÷    
*u
ν

⇓ ÷                                                

                                                                     

                      5              ku yuu f
u ν ν

 =  
 

* *

*

,                        (5b) 

This is the required non dimensional functional form close to 
boundary. We could also obtain the final form dividing by k 
for *uν  and that would yield  

                          /

* *

,u yf
u ku k

ν 
=  

 
                                         (5c) 

As numbers of primary dimensions are three (M, L, T) and 
number of independent variables are five so the non dimen-
sional equation will contain 5-3=2 number of non dimensional 
parameters (π-term) by Bukingham’s   π-theorem.  Equation 
(5b) or (5c) both contains same information and represents the 
same thing. Ipsen’s method is remarkably easy and straight 
forward and simultaneously more elegant compared to Ray-
leigh’s method or even to Bukingham’s method. The power of 
dimensional analysis is noteworthy.  Equation (4a) or (4b) as 
obtained from Prandtl-Karman equation (1) contains two di-
mensionless parameters *yu ν  or y k but for this we had to 
use Nikuradse’s experimental result on y/; but by dimensional 
approach we directly obtain these parameters in a natural way. 
We can even improve the knowledge about the functional form 
by physical reasoning. Equation (5c) is a more convenient form 
compared to (5b) because k i.e. roughness height when is large 
enough then the nondimensional term *kuν will be small 

enough and the velocity depends only upon the term y k . In 
fact large roughness height destroys the viscous laminar sub-
layer adjacent to the boundary and the turbulent velocity is 
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fully governed by k and not by boundary viscous shear term 
kuν *  produced by roughness. For smooth boundary howev-

er the viscous parameter kuν *   contributes its effect only to 
the boundary layer and should    in no way contribute at large 
distance y. With a view to this physical ground the viscous 
term *ku ν  can in no way be considered entangled with the 

term y k  and the functional form obtained in equation (5c) 
can be separated as  

                                ( )+ ( )
**

u yF fku ku
ν=  

or       1( ) ( )= ( )
**

u yF f fku ku
ν ω− =                              (5d) 

If we now consider free stream velocity U close to central axis 
then the functional form of U, following equation (5a), can be 
written as  
                                    1( , , , , )tU h kωη ρ τ δ=                             (6a) 

Here tδ is the width of turbulent boundary layer. By same ar-
gument 

                                   ( , )tU h ku ku
δν= /

**

                          (6b) 

or           ( ) ( )= ( )tU H h hku ku
δν ω− =

**

                          (6c) 

Now let us find the functional form of U-u. We can choose the 
functional form as  
                                       
     1(           ,           ,         ,     )tU u g yωρ τ δ− =               (7a)                   
      [LT-1]          [ML-3]     [ML-1T-2]   [L]      [L] 
 
The difference U-u has been chosen independent of coefficient 
of viscosity η on the physical ground that the boundary layer 
viscous effects determined by η either will cancel out in the 
difference or will contribute little to the difference of U-u. Now 
we follow Ipsen’s method once again starting with elimination 
of primary dimension M. 

                                   
2

2 3( ,     ,  )= ( , , )t tU u g y g u yωτ δ δρ− = *               

 

4 (       ,    ,     )tU u g u yδ− = *  
                         [LT-1]          [LT-1]   [L]   [L] 
                          *u⇓ ÷         *u⇓ ÷  

or                 5 (            ,      )t
U u g y

u
δ−

=
*

                                                                                

                                                      y⇓ ÷  y⇓ ÷  

or                 2   (          )=  ( )tU u g gyu
δ ω−

=
*

                (7b) 

Now we are ready for evaluation of functional form of u. Let’s 
concentrate on equation (5d), (6c) and (7b). We see the following 
relations                           
           

( ) ( )

( )

1 2 ( )

                        = ( ) ( )           (8)

Uf g Fu ku

h H Fku ku

νω ω

ν νω

+ = −

+ −

* *

* *

     

As 1 2  and , t ty
k y k

δ δω ω ω= = =  so 1 2( ) + ( )f gω ω  

must be independent of functional dependence on ν  i.e. 
on *kuν . This means H=F and finally we get 

     1 2( ) + ( )= ( ) ( )Uf g F hu ku
νω ω ω− =

* *
                  (9a)                         

 and                                    1 2ωω ω=                                          (9b) 
If however we assume same functional form for u and U then 
the functional form h1 given by equation (6a) is same as f1 giv-
en by equation (5a) and for equation (6c) we directly get  

                                  

           ( ) ( )= ( )tU F f fku ku
δν ω− =

**

 

So functional form h (ω ) is same as ( )f ω . 

The relations among 1ω , 2ω and ω given by equation (9a) and 
(9b) are just like entropy versus thermodynamic probability 
relations between subsystems and system. Entropy relations 
are given by 
                     1 1 2 2( ) + ( )= ( )s s sω ω ω  

                 1 2ωω ω=  

Here ( )s ω is entropy of the system comprising of subsystems 
1 and 2. Boltzmann obtained the functional form of 
s k ln cω= + from these two properties of  and s ω . We now 
will adopt same method for equation (9a) and (9b).  

             1 2

1 1 1

( ) ( ) ( )f g hω ω ω
ω ω ω

∂ ∂ ∂
+ =

∂ ∂ ∂
 

or,                          1
2

1 1

( ) ( ) ( )f h hω ω ω ωω
ω ω ω ω

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
 

or,                   1
1 1 2

1

( ) ( ) ( ) 1
r

f h h
k

ω ω ωω ωω ω
ω ω ω

∂ ∂ ∂
= = =

∂ ∂ ∂
 

Here kr is constant and independent of 1  or ω ω  i.e. inde-

pendent of 2ω also. From the above relation we can write 

or,                                1
1

1

1( )=( )
r

ddf k
ωω ω                                                

On integration the equation yields   
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               1 1 1
1( )

r

f ln c
k

ω ω= +  

 c1 is constant of integration and is  independent of 1  ω . From 
equation (5d) we get 

                                               

1
1 ( ) ( )

* *r

yu ln c Fu k kuk
ν= + +                             (10a) 

From equation (10a) we get  

            1
1( )= t

* * r

U F ln cu ku k k
δν− +  .  

Now comparing with equation (8) we get  

           ( ) 1
1( )= t

* * r

U F h ln cu ku k k
δν ω− = +                 (10b) 

If we perform partial differentiation w.r.t. 2ω on both sides of 
equation (9a) we get 

                         2
1

2

( ) ( )g hω ωω
ω ω

∂ ∂
=

∂ ∂
 

                                

2
2

2

( ) ( ) 1
r

g h
k

ω ωω ω
ω ω

∂ ∂
= =

∂ ∂
                                              

Integrating above equation we have   

                                        2 2 2
1( )

r

g ln c
k

ω ω= +        

c2 is constant of integration and is independent of 2ω . 

                      2
1 ( )t

* r

U u ln cyu k
δ−

= +  

If we put u=U for  ty δ=  we get c2 =0. This means  

                          
1 ( )

* r t *

u y Uln
u k uδ

= +                                   (10c) 

This equation is an alternative form of equation (10a). From 
equation (10b) we get 

                                           

1
1 ( ) ( )t

** r

Uc ln F kuu k k
δ ν= − −                         (10d) 

This is a remarkable result. It was impossible by Prandtl’s mix-
ing layer theory alone to find the expression of c1. If we put 

lsu u= for lsy δ= for smooth boundary where lsδ thickness 
of laminar sublayer then using equation (10d) is and (10c) we 
get  

                                      ( )* t
r

lsls

uk ln
U u

δ
δ=

−
                                 

i.e.         
1 ( )

( )/
t

r
lsls *

k ln
U u u

δ
δ=

−
                                   (10e) 

So we can find also the value of Karman constant theoretically. 
This programme will be resumed again in section 4. 

 
Now substituting the value of  1c  from equation (10d) in equa-
tion (10b) we get  

                      
1( )

* * *r *

U UF lnu ku uk ku
νν− = +                    

or,              
1( ) *

* r

kuF lnku k
ν

ν
=  

Therefore for smooth surfaces close to which laminar sublayer 
exists we finally get from equation (10a) 

                          1
1 ( )*

* r

yuu ln cu k ν= +                              (10f) 

Equation (10f) is exactly the same equation as (4a) for smooth 
surface. It is an astonishing result. Without going into physical 
details of velocity distribution across the stream one can obtain 
the same result only from dimensional analysis coupled with 
physical reasoning.  It means that even without the model of 
the exact physical process we can go far based on some general 
guidelines. If however we think of very rough boundary then 
laminar sublayer is completely destroyed and value of 

( )
*

F ku
ν is never

1 *

r

kuln
k ν

 . 

The full solutions are therefore given in the following. 

   1
1 ( )*

* r

yuu ln cu k ν= +      (smooth boundary)             (10f) 

c1 is constant and is independent of y k . kr is Karman con-

stant and is independent of y k , t yδ  and t kδ . It is how-

ever possible that c1 and kr may depend on *u and U. 

   1
1 ( ) ( )

* *r

yu ln c Fu k kuk
ν= + +  (rough wall)        (10a) 

     
1( ) ( )*

* r

kuF lnku k
ν

ν→  for small values of *ku
ν . 

 

 

4   EVALUATION OF c1 AND kr IN TERMS OF      
     COEFFICIENT OF FRICTION cf, REYNOLDS   
     NUMBER Rf AND FOR TURBULENT FLOW AND   
     SHEAR REYNOLDS NUMBER Rls

* 
 

                  2

2
2( )1( )

2

fc u U
U

ωτ

ρ
= = *  

  or,        2 f
U cu =

*
                                                           (11) 
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From equation (10e) we get  

                   
1 ( )

( )/

* t

r
* lsls *

u
k ln uU u u

δ
ν

δ
ν

=
−

 

                                                         

                       
( )( )1 [ ]

( )/

t
*

*
ls * ls

U u U
ln

U u u R

δ
ν=

−
  

                      
21 [ ]

2
t f

*
lsls

f *

R c
ln

Ru
c u

=
−

                            (12)   

If we now apply equation (10f) for laminar sublayer top we get        

                  1
1 * lsls

* r

uuc lnu k
δ
ν

= −                                                               

                   1
1 *ls

ls
* r

uc lnRu k
= −                                                (13)                         

Although we can theoretically find the expression of kr and c1  
from equation (12) and (13) but it is very difficult to find a gen-
eral expression of cf in terms of R t . So we will use Nikuradse’s 
estimates of y/ (value of y close to boundary for which u=0) and 

lsδ for smooth boundary.  

               11 6
*

.
ls u

νδ =                                                            (14) 

               
1

107 9 22
/

*.
lsy

u
νδ= =                                           (15) 

Substituting u=0 for y=y/ in equation 10(f) we get  

                   1
2 22

r
c k= .                                                               (16) 

Boundary shear stress 2
*uωτ ρ= . In laminar sublayer we can 

write  

                   du
dyωτ η=  

 or,      2
*

du u
dy

η
ρ =  

Integration of the equation leads to 

                       
2yuu A

ν
= +*  

At y=y/ given by equation (15), u=0. So the above equation 
gives 9 22A u= − * . . So in laminar sublayer we have  

                
1

9 22
*

* .
yuu

u ν
= −                                                        (17) 

If we put lsy δ= and lsu u=  then from equation (17) we have  

            
1 1

9 229 22
lsls

ls
uu Ru
δ
ν

= − = −**

* ..
 

lsR*  is shear Reynolds number. As 11 6ls
ls

uR δ
ν= =* * .  so we 

have, 

             1 11 59 22
ls

ls
u Ru = − ≈*

*
..                                         (18) 

From equation (13) we get  

                   1
1 * lsls

* r

uuc lnu k
δ
ν

= −  

                       
111 5 11 6

r

. ln .
k

= −  

                   1
2 4511 5

r
c k= − ..                                                  (19) 

Now comparing equation (16) and (19) we get  

           2 22 2 4511 5. ..
r rk k= −      

               
11 51 2 46
4 67

. .
.rk = =  

or,              0 406 0 41. .rk = ≈                                                   (20) 

and             1
2 22 5 47

r
c k= =. .                                                (21) 

This is a remarkable result. Values of rk and 1c are too good in 
agreement with the values presented in equation 4(a). 

Applying again Nikuradse’s estimate 30=/ ky  (value of y/ 

for which u reduces to zero near rough boundary) to equation 
(10a) we get 

          1
1 (1 30)+ ( ) 0*

r
ln c F kuk ν+ =   

Substituting c1=5.47 and kr =0.406 we get ( ) 2 91*F ku .ν = . 
So equation (10a) for rough boundary reduces to 

                       
1 ( ) 8 38

* r

u ln y k .
u k

= +  

Above equation is the same as given in 4(b). So we get com-
plete solution for turbulent velocity distribution for rough and 
smooth straight pipe. 
If we take partial derivative of equation (10a) with respect to y 
we get 

                          
1 1

r

u
u y k y

∂
=

∂*

 

 or,                     2 2 2 2( )* r
uu k y
y
∂

=
∂

 

 or,                     2 2 2( )r
uk y
yωτ ρ ∂

=
∂
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Above expression of turbulent boundary shear stress was the 
starting point of Prandtl-Karman mixing layer theory.  

 

5   EVALUATION OF REYNOLDS NUMBER RLS AT   
     THE TOP OF LAMINAR SUBLAYER  

If we write 
21( )

2

ωτ

ρ
=fl

ls

c
u

then substituting 

ω
ητ δ= ls

ls

u in the expression we have   

                  2 2
fl

ls ls ls
c u R

ν
δ= =                                            (22) 

again         
21( )

2

fl

ls

c
u

ωτ

ρ
= = 2 2( )

ls

u
u

*                           (23) 

Now substituting the expression of   
*

lsu
u  from equation (18) 

in equation (23) and then comparing with equation (22) we get 

              2
2 2

( 1 9 22)ls ls
R R=

−* .  

  or,       2 2( 1 9 22) (11 5) 132ls lsR R= − = ≈* . .                    (24)   
This means that characteristic turbulent flow necessarily asso-
ciated with eddies are set up close to boundary of pipe line 
where Reynolds number exceeds 130. Vortices start separating 
from the boundary layer and produce ‘Karman Vortex sheet’ 
at about  100≈R  for flow past cylinder [2].  The result ob-
tained in equation (24) is in good agreement with experiment. 

6 CONCLUDING REMARKS  
The treatment in this paper did not consider the effect of pres-
sure gradient and acceleration due to gravity g. If these two 
parameters were included the number of independent dimen-
sionless parameters (π terms) would be 4. In such situation the 
expression of velocity would have been more involved with 
the parameters. For equation (5c) we then had 
                                               
                          

2

2   uu k y pf
u yu y gy u x

ν
ρ

 ∂
=  ∂ 

/ *

* * *

, , ,  
 
subject to boundary condition that u=0 for y=y/. And x is dis-
tance along the central line of pipe. Similarly for equation (6b) 
we get 
                                               
                  

2

2   
t t t

uU k y ph
u u g u x

ν
δ δ δ ρ
 ∂

=  ∂ 
/ *

* * *

, , ,  
 
However the logarithmic turbulent velocity distribution in 
absence of these two extra parameters has been derived along 
with all constants in the present article. 
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